Characteristics

1500 - PYROMETER - THERMOMETER - MODULAR - ECONOMIC

- Input:	Infrared radiation
- Maximum range	-40+1000 °C
- Output:	420 mA HART (3-wire system)
- Voltage supply:	24 VDC ±10%
- Accuracy:	see Technical Data
- Process connection:	several options
- Electrical connection:	M12 male, 8-pole
- Temperature range:	-20+80 °C (ambient)
- Limit value contacts:	2 electronically (NPN / PNP)
- Adjustment:	keys / software
- Material:	stainless steel 1.5471 (medium contact)

Technical Data

Input

Infrared radiation: -40...1000 °C (minimum range: 100 °C)

Output

Current signal: 4...20 mA with superimposed communication signal (HART), 3-wire system

Current range: 3,8...20,5 mA

Signal on error: 3,6 mA (sensor short circuit, underflow)

21 mA (sensor break, sensor open circuit, overflow)

Performance Parameters

Infrared sensor: Spectral region: 8...14 µm

Optical resolution: 15:1

Accuracy*: ±1,5 °C, ±1,5% Repeatability*: ±0,75 °C, 0,75%

Temperature coefficient: ±0,05 K/K, ±0,05% (ambient temperature: <18 °C, >28 °C)

Resolution: 0,1 °C
Response time: 30 ms (t90)
Warm-up time: 10 min
Emissivity, amplification: 0,100...1,100
Transmittance: 0,100...1,000

*Reference values: Temperature: ambient = 23 ± 5 °C, test object = >0 °C / whichever is greater / ϵ = 1 /

response time = 1 s / distance D = 20 cm, measuring point S = 16,6 mm

Measuring amplifier: Accuracy: 0,3% of range

Resolution: 16 Bit Filter setting: 0...99 s

Measuring rate: 10 measurements/s

Configuration: Keys on display / via software (HART communication)

Transmission behaviour: temperature linear

Turn-on delay time: <5 s Reponse time: 20 ms

Indicator / limit values: Resolution: -9999...9999 digit Error of measurement: ±0,2% of range, ±1 digit

Applications

The METS-IR is designed for process monitoring with a non-contact measurement of temperature. With its two configurable limit value contacts, the integrated display and the numerous electrical connections, the temperature sensor is also suitable for applications with higher requirements.

Screw-In Infrared Temperature Sensor

Page-1

Technical Data (Continued)

Performance Parameters (Continued)

Indicator / limit values: temperature drift: 100 ppm/K

Indication

Display: 7 segment, 8,5 mm, red, 4 digits, representation mirror-inverted 180° possible

Display head: rotatable approx. 330° Memory: minimum / maximum values

Indication: - measuring value - unit of measurement - control menu

Decimal point: automatically or manually, dependent on measuring range / unit

Limit Value Contacts

Electronically: 2x PNP or NPN (30 VDC, 200 mA)

Option: 2x PNP or NPN (30 VDC, 1000 mA)

Indication: 1 LED red for each limit value

Voltage across: <1 V

Settings: with 3 keys (TouchM-Technology)

Setting range: switch point and hysteresis: any value within measuring range

Switching delay: 0,0...999,9 s Failsafe function: adjustable

Galvanical isolation: switching outputs are separated from measuring amplifier

Supply

Voltage: 24 VDC ±10%

Reverse battery protection: available (no function, no damage)

Environmental Conditions

Temperature: Operating range: -20...+80 °C

Sensing head: -20...120 °C Storage: -40...+85 °C 10...95% rH (no condensation)

Humidity: **Mechanics**

Dimensions: see page 3

Process connection: 1/2" / 3/4" / 1" / 1/2NPT

Electrical connection: M12 male, 8-pole

Material: Process connection: stainless steel 1.4571

Sensing head: stainless steel Body: PBT GF30

Display head: polycarbonate (makrolon)

Weight: approx. 240 g

Fitting position: any (avoid deposition on lens)
System pressure: 0 bar (barometric pressure)

Device protection: Protection class: at least IP65 (electronics)

PCB: potted

Vibration / Shock: IEC 68-2-6: 3G, 11 – 200 Hz, any axis / IEC 68-2-27: 50G, 11 ms, any axis

Programmable Features

Measuring amplifier: Measuring range start (LRV) / Measuring range end (URV) / Adjustment, output simulation

current / Filter function / Linear output signal / HART address / 2-point calibration

Display: indication range / indication time / decimal point / units / zero point stabilisation /

programming lock / calibration points / TAG number

Limit contacts: limit value 1 and 2 / hysteresis 1 and 2 / delay times 1 and 2

Features, Operation: according VDMA 24574-1 up to 24574-4

Optical Charts

S = Measuring point size

D = Distance from sensing head front to the object

For valid measurement the point size should be as large as the object or smaller.

Electrical Connection

Electrical Connection (Example)

METS-IR

Dimensions (in mm)

2) Please select settings as per technical data. For values not given, factory settings will be used

Accessories:

Interface HART, USB, software Order No.: 01310-00220

HART Communication

The HART-Tool is a graphical user interface for the ME series with menu-driven progam for configuration. It can be used for putting into operation, configuration, analysis of signals, data backup and documentation of the device. Operating systems: Windows 2000, XP, Windows 7, 8.1 and 10.

Connection via HART interface (modem) with USB interface of a PC or hand-held HART communicator

Settings: - Adjustment of output current

- Simulation of output current

- Filter function

- Limits of measuring range

- Linear output signal

- HART address

- HART TAG number

- 2-point calibration

Please note: When using communication via a HART modem, a comunication resistance of 250 Ω has

to be taken into account.